In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function

نویسندگان

  • Fabiano M. Cordova
  • Aderbal S. Aguiar
  • Tanara V. Peres
  • Mark W. Lopes
  • Filipe M. Gonçalves
  • Aline P. Remor
  • Samantha C. Lopes
  • Célso Pilati
  • Alexandra S. Latini
  • Rui D. S. Prediger
  • Keith M. Erikson
  • Michael Aschner
  • Rodrigo B. Leal
چکیده

Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left ventricular phosphorylation patterns of Akt and ERK1/2 after triiodothyronine intracoronary perfusion in isolated hearts and short-term in vivo treatment in Wistar rats

Objective(s): To determine the effects of triiodothyronine (T3) intracoronary perfusion in isolated hearts and short-term administration in rats on the left ventricular (LV) phosphorylation patterns of Akt and ERK1/2. Materials and Methods: Cardiodynamic and hemodynamic parameters were evaluated in Langendorff–perfused hearts. Left ventr...

متن کامل

Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learn...

متن کامل

From the DEPARTMENT OF NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden MOLECULAR MECHANISMS UNDERLYING THE ACTIONS OF PSYCHOACTIVE DRUGS IN THE BASAL GANGLIA: FOCUS ON CANNABINOIDS AND MORPHINE

This thesis is centered on the identification of the molecular mechanisms involved in the psychomotor effects of cannabinoids and morphine. These drugs share the ability of acting at the level of the basal ganglia, a group of subcortical structures involved in the control of locomotion, as well as in cognitive and motivational aspects of motor function. In Paper I and II, we have examined the i...

متن کامل

O-26: Effects of Recombinant-LH Supplementation on The Proteomic Profile of Follicular Fluid from Poor Responder Patients: Focus on Follicular Growth Factors and Oocyte Maturity Markers

Background Poor and fragmentary data was available regarding the effects of recombinant-LH (r-LH) in in-vitro granulosa and theca cells of human origin. No data was available from in vivo studies regarding the effects of r-LH supplementation on SCF,EGF,ERK-1/2 and AKT-1 pathways in the follicular fluid of older-poor-responder women undergoing IVF cycle. Evidence from in-vitro and animal studies...

متن کامل

Individual differences in the effects of cannabinoids on motor activity, dopaminergic activity and DARPP-32 phosphorylation in distinct regions of the brain.

This study explored the behavioural, neurochemical and molecular effects of Delta9-tetrahydrocannabinol (Delta9-THC) and WIN55,212-2, in two rat phenotypes, distinguished on the basis of their vertical activity upon exposure to a novel environment, as high responders (HR) and low responders (LR). Motor effects were assessed under habituated vs. non-habituated conditions. Dopaminergic activity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012